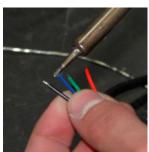
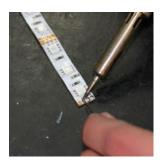


How to Solder Wires on Flexible LED Strips


1. Assemble your Tools: We recommend a 30-60W, temperature adjustable soldering iron capable if soldering at around 500-600 ° F. The more powerful the iron the better, as you won't have to spend a lot of time heating the joint which can damage components. Use a thin rosin core solder and have a wet sponge or a wad of steel wool available for cleaning the tip of your soldering iron.


2. Clean your Soldering Iron: A clean tip will prevent your joints from overlapping. Clean the tip of your soldering iron regularly to keep your joints as clean and as small as possible. This can be done with a wet sponge or a wad of steel wool.

3. Secure your Flexible LED Strip: You will not want your LED strips to move around during the soldering process. Use a piece of masking tape to secure the strip to a flat, non-flammable surface.

4. Strip and Tin your Wires: We recommend 16 gauge wire. Tinning means to apply a small amount of solder directly to the exposed wire. Once you have completed this step, the ends of your wire should appear silver in color and no longer appear to be stranded.

5. Tin the Solder Points on the Flexible LED Strip: Flexible LED strip has clearly marked cut points. Make your cut directly in between the set of dots, so you have one full set on each side of the cut. Melt a small amount of solder directly to the copper dots, one at a time. Be sure not to apply so much that the solder overlaps.

6. Solder the Wires to the Solder Points: Place the tinned wire on top of the tinned solder point. Place the soldering iron over both in order to heat up each solder enough to melt and become one. Be sure to hold long enough as not to create a 'cold solder'. A 'cold solder' occurs when only one of the joints is heated and connected while the other remains cold. Cold solder will not conduct electricity. You want to see a joining or blending of the solder on both the wire and the tinned point.

7. A Properly Soldered Product: Note that the solder joints are clean and do not touch or overlap each other.

8. Test: Once dry and cool, connect your soldered LED strip to a proper power source and test your connection. If the strip does not light, you may have a cold solder joint. See step (6) above. If you notice any smoking or sparks, that means your joints have overlapped and an electrical arc has been produced.

Although connectors designed for LED products are convenient, soldering is always the first choice for secure connections which will last.

If you're new to soldering, it is advisable to purchase a little extra flexible LED strip so you have a bit to practice with. There are cut marks in between every three LEDs, so if you mess up, you can easily trim back to the next set of cut marks if you have a little more length than you actually need.

Questions? Give us a call Monday through Friday between 8 AM and 4 PM at 775-841-4490 or email us at Sales@TheLEDLight.com

