power light source Luxeon™III Emitter

Technical Datasheet DS45

Luxeon III is a revolutionary, energy efficient and ultra compact new light source, combining the lifetime and reliability advantages of Light Emitting Diodes with the brightness of conventional lighting.

Luxeon III is rated for up to 1000mA operation, delivering increased lumens per package.

Luxeon Emitters give you total design freedom and unmatched brightness, creating a new world of light.

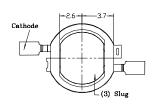
Luxeon Emitters can be purchased in reels for high volume assembly. For more information, consult your local Lumileds representative.

For high volume applications, custom Luxeon power light source designs are available upon request, to meet your specific needs.

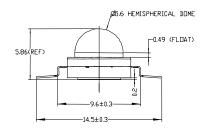
Luxeon III Emitter is available in 5500K white, green, blue, royal blue and cyan.

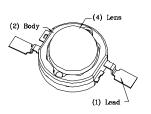
Features

- · Highest flux per LED family in the world
- Very long operating life (up to 100k hours)
- Available in 5500K white, green, blue, royal blue, cyan
- Lambertian radiation pattern
- More energy efficient than incandescent and most Halogen lamps
- Low voltage DC operated
- · Cool beam, safe to the touch
- Instant light (less than 100 ns)
- Fully dimmable
- No UV
- Superior ESD protection


Typical Applications

- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Mini-accent / Uplighters / Downlighters / Orientation lighting
- Fiber Optic Alternative / Decorative / Entertainment lighting
- Bollards / Security / Garden lighting
- · Cove / Undershelf / Task lighting
- Traffic signaling / Beacons / Rail crossing and Wayside lighting
- Indoor and Outdoor Commercial and Residential Architectural lighting
- Edge-Lit Signs (Exit, Point Of Sale)
- LCD Backlights / Light Guides




Mechanical Dimensions

TOP VIEW Cathode 15 23

BOTTOM VIEW

Flux Characteristics at 700mA, Junction Temperature, $T_J = 25$ °C

Color	Luxeon Emitter	Minimum Luminous Flux (Lm) or Radiometric Power (MW) $\Phi_V^{[1,2]}$	Typical Luminous Flux (Lm) or Radiometric Power (MW) $\Phi_V^{[2]}$	Radiation Pattern
WHITE	LXHL-PWO9	60.0	65	
GREEN	LXHL-PMO9	51.7	64	LAMBERTIAN
CYAN	LXHL-PEO9	51.7	64	(HIGH DOME)
BLUE ⁽³⁾	LXHL-PBO9	13.9	23	
ROYAL BLUE ^[4]	LXHL-PRO9	275 MW	340 mW	

Flux Characteristics at 1000mA, Junction Temperature, $T_J = 25^{\circ}C$

		Typical Luminous Flux (lm) or Radiometric Power (mW)	
	Luxeon	$\Phi_{V}^{[1,2]}$	
Color	EMITTER	I OOOMA	RADIATION PATTERN
WHITE	LXHL-PWO9	80	
WHITE GREEN	LXHL-PWO9 LXHL-PMO9	80 80	Lambertian
GREEN CYAN		= =	Lambertian (high dome)
GREEN	LXHL-PMO9	80	

Lambertian (High Dome)

Notes:

- The anode side of the device is denoted by a hole in the lead frame. Electrical insulation between the case and the board is required – slug of device is not electrically neutral. Do not electrically connect either the anode or cathode to the slug.
- 2. Drawings not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimensions without tolerances are for reference only.

- 1. Minimum luminous flux or radiometric power performance guaranteed within published operating conditions. Lumileds maintains a tolerance of \pm 10% on flux and power measurements.
- Luxeon types with even higher luminous flux levels will become available in the future. Please consult your Lumileds Authorized Distributor or Lumileds sales representative for more information.
- Due to the CIE eye response curve in the short blue wavelength range, the minimum luminous flux will vary over the Lumileds blue color range.

 Luminous flux will vary from a typical of 17 lm for the 460-465nm bin to a typical of 30 lm for the 475-480 nm bin due to this effect. Although the luminous power efficiency is lower in the short blue wavelength range, radiometric power efficiency increases as wavelength decreases. For more information, consult the Luxeon Design Guide, available upon request.
- Royal Blue product is binned by radiometric power and peak wavelength rather than photometric lumens and dominant wavelength.

Optical Characteristics at 700mA, Junction Temperature, $T_{\perp} = 25^{\circ}C$

Radiation Pattern	Color	PEAK OR CC	DOMINANT WAVELENGTH ^[1] \$\lambda D\$, PEAK WAVELENGTH ^[2] \$\lambda P\$, OR COLOR TEMPERATURE ^[3] CCT MIN. TYP. MAX.		SPECTRA L HALF- WIDTH ^[44] (NM) $\Delta \lambda_{1/2}$	TEMP COEFFICIENT OF DOMINANT WAVELENGTH (NM/C) $\Delta\lambda$ D/ Δ TJ	TOTAL INCLUDED ANGLE ⁽⁵⁾ (DEGREES) $\theta_{0.90V}$	VIEWING ANGLE ^[6] (DEGREES) 2 0 1/2
	WHITE	4500 K	5500 K	10000 K				
	GREEN	520 NM	530 NM	550 NM	35	0.04	160	140
LAMBERTIAN	CYAN	490 nm	505 им	520 NM	30	0.04	160	140
(HIGH DOME)	BLUE	460 NM	470 nm	490 nm	25	0.04	160	140
	ROYAL BLUE ^[2]	440 nm	455 NM	460 nm	20	0.04	160	140

- Dominant wavelength is derived from the CIE 1931 Chromaticity diagram and represents the perceived color. Lumileds maintains a tolerance of ± 0.5nm for dominant wavelength measurements.
- Royal Blue product is binned by radiometric power and peak wavelength rather than photometric lumens and dominant wavelength. Lumileds maintains a tolerance of ± 2nm for peak wavelength measurements.
- Luxeon III white products are binned according to chromaticity coordinates, x and y. Please consult Lumileds' Application Brief AB21 on Luxeon Product Binning and Labeling for further details on the binning structure. Lumileds maintains a tolerance of ±0.005 for measurements of the chromaticity coordinates. The typical CRI (Color Rendering Index) for 5500K white product types is 70.
- 4. Spectral width at ½ of the peak intensity.
- 5. Total angle at which 90% of total luminous flux is captured.
- θ½ is the off axis angle from lamp centerline where the luminous intensity. is ½ of the peak value.
- Blue and Royal Blue power light sources represented here are IEC825 Class 2 for eye safety.

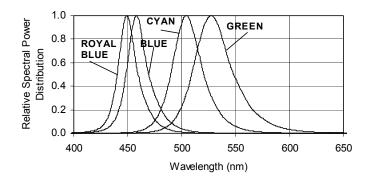
Electrical Characteristics at 700mA, Junction Temperature, $T_J = 25^{\circ}C$

Radiation Pattern	COLOR	Forwa Min.	rd Voltage Typ.	V _F (V) ⁽¹⁾ MAX.	Dynamic resistance $(\Omega) R_0$	TEMPERATURE COEFFICIENT OF FORWARD VOLTAGE ^[3] (mV/°C) $\Delta V_F / \Delta T_I$	THERMAL RESISTANCE, JUNCTION TO CASE (°C/W) R0JB
TATIENN	OOLOIT	1-1114.		I-lax.	(22) 110	AVF ATJ	(0/11) 1103-8
	WHITE	3.03	3.70	4.47	0.8	-2.0	13
	GREEN	3.03	3.70	4.47	0.8	-2.0	13
LAMBERTIAN	CYAN	3.03	3.70	4.47	0.8	-2.0	13
(HIGH DOME)	BLUE	3.03	3.70	4.47	0.8	-2.0	13
	ROYAL BLUE	3.03	3.70	4.47	0.8	-2.0	13

Typical Electrical Characteristics at 1000mA, Junction Temperature, $T_{\perp} = 25^{\circ}C$

Radiation		Typical Forward Voltage $V_F\left(V\right)^{t+1}$
PATTERN	COLOR	I OOOMA
	WHITE	3.90
	GREEN	3.90
LAMBERTIAN	CYAN	3.90
	BLUE	3.90
	ROYAL BLUE	3.90

Absolute Maximum Ratings

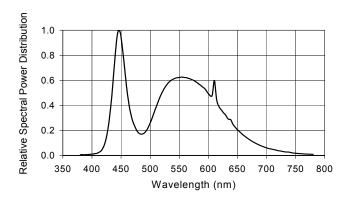
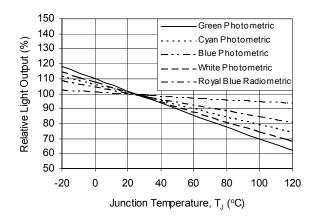

Parameter	WHITE/GREEN/CYAN/ BLUE/ROYAL BLUE	
DC FORWARD CURRENT (MA) [1]	1000	
PEAK PULSED FORWARD CURRENT (MA)	1000	
AVERAGE FORWARD CURRENT (MA)	1000	
LED JUNCTION TEMPERATURE (°C)	135	
STORAGE TEMPERATURE (°C)	-40 то + I 20	
SOLDERING TEMPERATURE (°C) [2]	260 FOR 5 SECONDS MAX	
ESD SENSITIVITY [3]	± 16,000V HBM	

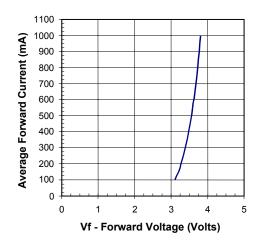
Notes:

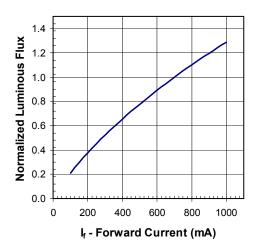
- Lumileds maintains a tolerance of ± 0.06V on forward voltage measurements.
- Dynamic resistance is the inverse of the slope in linear forward voltage model for LEDs. See Figures 3a and 3b.
- 3. Measured between 25°C \leq TJ \leq 110°C at I_F = 700mA.

- Proper current derating must be observed to maintain junction temperature below the maximum. For more information, consult the Luxeon Design Guide, available upon request.
- 2. Measured at leads, during lead soldering and slug attach, body temperature must not exceed 120°C. Luxeon Emitters cannot be soldered by general IR or Vapor-phase reflow, nor by wave soldering. Lead soldering is limited to selective heating of the leads, such as by hot-bar reflow, fiber focussed IR, or hand soldering. The package back plane (slug) may not be attached by soldering, but rather with a thermally conductive adhesive. Electrical insulation between the slug and the board is required. Please consult Lumileds' Application Brief AB10 on Luxeon Emitter Assembly Information for further details on assembly methods.
- LEDs are not designed to be driven in reverse bias. Please consult Lumileds' Application Brief AB11 for further information.

Wavelength Characteristics, $T_J = 25^{\circ}C$


Figure 1b.
White Color Spectrum of Typical
5500K CCT Part, Integrated
Measurement.


Light Output Characteristics

Relative Light Output vs. Junction
Temperature for White, Green, Cyan, Blue and Royal Blue.

Forward Current Characteristics, T_J = 25°C

Note:

Driving these high power devices at currents less than the test conditions may produce unpredictable results and may be subject to variation in performance. Pulse width modulation (PWM) is recommended for dimming effects.

Figure 3.
Forward Current vs. Forward
Voltage for White, Green,
Cyan, Blue, and Royal Blue.

Figure 4. Relative Luminous Flux vs. Forward Current for White, Green, Cyan, Blue, and Royal Blue at $T_{\rm J}=25^{\circ}{\rm C}$ maintained.

Current Derating Curves

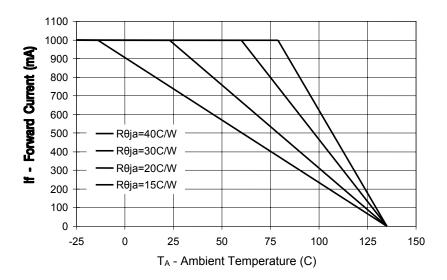
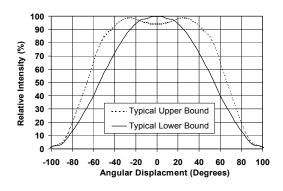



Figure 5. Maximum Forward Current vs. Ambient Temperature. Derating based on $T_{\rm JMAX}$ = 135 °C for White, Green, Cyan, Blue, and Royal Blue.

Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

Note:

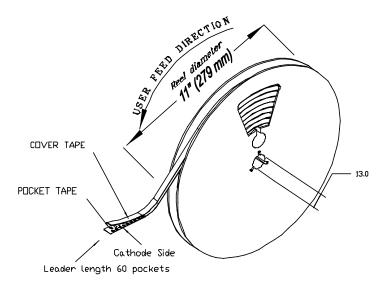
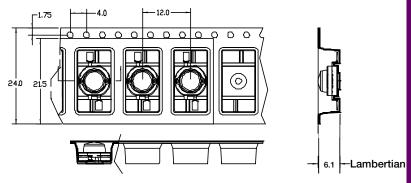

For more detailed technical information regarding Luxeon radiation patterns, please consult your Lumileds Authorized Distributor or Lumileds sales representative.

Figure 6.
Typical Representative Spatial
Radiation Pattern for Luxeon
Emitter White, Green, Cyan, Blue
and Royal Blue.


Average Lumen Maintenance Characteristics

Lifetime for solid-state lighting devices (LEDs) is typically defined in terms of lumen maintenance—the percentage of initial light output remaining after a specified period of time. Lumileds projects that Luxeon III products will deliver, on average, 70% lumen maintenance at 50,000 hours of operation at a 700 mA forward current or 50% lumen maintenance at 20,000 hours of operation at a 1000 mA forward current. This performance is based on independent test data, Lumileds historical data from tests run on similar material systems, and internal Luxeon reliability testing. This projection is based on constant current operation with junction temperature maintained at or below 90°C. Observation of design limits included in this data sheet is required in order to achieve this projected lumen maintenance.

Emitter Reel Packaging

FND User feed direction 60±10 -5 - 10-EMPTY POCKETS LOADED POCKETS VITH TAPE EMPTY POCKETS VITH TAPE EMPTY POCKETS VITH UNSEALED COVER TAPE

Buy it at www.TheLEDLight.com sales@TheLEDLight.com

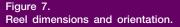


Figure 8. Tape dimensions.

- Luxeon Emitters should be picked up by the body (not the lens) during placement. The inner diameter of the pick-up collet should be greater than or equal to 6.5 mm. Please consult Lumileds Application Brief AB10 on Luxeon Emitter assembly information for further details on assembly methods.
 - Drawings not to scale.
- 3. All dimensions are in millimeters.
- All dimensions without tolerances are for reference only.

