power light source

Luxeon V Star

Technical Data DS30

Luxeon is a revolutionary, energy efficient and ultra compact new light source, combining the lifetime and reliability advantages of Light Emitting Diodes with the brightness of conventional lighting.

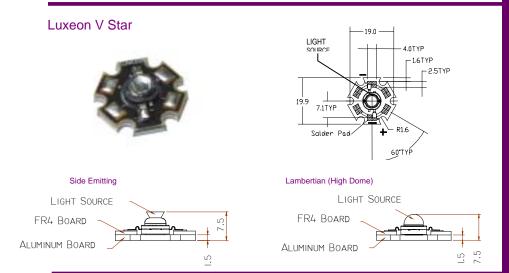
Luxeon Power Light Sources give you total design freedom and unmatched brightness, creating a new world of light.

The Luxeon V offers extreme luminous density, providing lumens per package of 4X a standard Luxeon or up to 50X that of alternative solid state light sources creating new opportunities for solid state lighting to displace conventional lighting technologies.

For high volume applications, custom Luxeon power light source designs are available upon request, to meet your specific needs.

Luxeon V Star is available in green, blue, royal blue and cyan.

Features


- Highest Flux per LED in the world 4X the Flux of a comparable Luxeon and up to 50X the Flux of standard through hole LEDs
- Extreme Luminous Density 20X the lm/mm²
 of a standard through hole LED
- Very long operating life (up to 100k hours)
- Available in Green, Blue, Royal Blue, and Cyan
- Lambertian or Side Emitting Distribution
 Pattern
- More Energy Efficient than Incandescent and most Halogen lamps
- Low voltage DC operated
- Cool beam, safe to the touch
- Instant light (less than 100 ns)
- Fully dimmable
- No UV
- Superior ESD protection

Typical Applications

- Portable (flashlight, bicycle)
- Architectural Detail Lighting
- Decorative
- Fiber Optic Alternative
- Medical Applications
- Power Signaling / Airfield / Taxiway Lighting
- Edge-Lit Signs (Exit, Point Of Sale)
- LCD Backlights / Light Guides

Mechanical Dimensions

Flux Characteristics at 700mA, Junction Temperature, T_J = 25°C

Color	PART NUMBER	Minimum Luminous Flux (Im) or Radiometric Power (MW) Φ_V [1.2]	Typical Luminous Flux (Im) Or Radiometric Power (MW) $\Phi_V^{[2]}$	Radiation Pattern
GREEN CYAN BLUE ^[3]	LXHL-LM5C LXHL-LE5C LXHL-LB5C	67.2 67.2 18.1	120 120 30	Lambertian
ROYAL BLUE ^[4]	LXHL-LR5C	275 MW	500 MW	
GREEN CYAN BLUE ^[3] ROYAL BLUE ^[4]	LXHL-FM5C LXHL-FE5C LXHL-FB5C LXHL-FR5C	67.2 67.2 18.1 275 MW	110 110 27 450 mW	SIDE EMITTING

Notes:

- 1. Slots in aluminum-core PCB for M3 or #4 mounting screw.
- Electrical interconnection pads labeled on the aluminum-core PCB with "+" and "-" to denote positive and negative, respectively. All positive pads are interconnected, as are all negative pads, allowing for flexibility in array interconnection.
- Electrical insulation between neighboring Stars is required – aluminum board is not electrically neutral.
- 4. Drawings not to scale.
- 5. All dimensions are in millimeters.

Notes:

- Minimum luminous flux or radiometric power performance guaranteed within published operating conditions. Lumileds maintains a tolerance of ± 10% on flux and power measurements.
- Luxeon types with even higher luminous flux levels will become available in the future. Please consult your Lumileds Authorized Distributor or Lumileds sales representative for more information.
- Minimum flux value for 470 nm devices. Due to the CIE eye response curve in the short blue wavelength range, the minimum luminous flux will vary over the Lumileds' blue color range. Luminous flux will vary from a minimum of 13.9 Im at 460 nm to a typical of 40 lm at 480 nm due to this effect. Although the luminous power efficiency is lower in the short blue wavelength range, radiometric power efficiency increases as wavelength decreases. For more information, consult the Luxeon Design Guide, available upon request.
- Royal Blue product is binned by radiometric power and peak wavelength rather than photometric lumens and dominant wavelength.

Optical Characteristics at 700mA, Junction Temperature, $T_{\perp} = 25^{\circ}C$

Radiation		Dominant Wavelength ⁽¹⁾ λD or Peak Wavelength ⁽²⁾ λΡ			SPECTRAL HALF-WIDTH ^[3] (nm)	TEMPERATURE COEFFICIENT OF DOMINANT WAVELENGTH (nm/°C)
PATTERN	Color	Min.	TYP.	Max.	$\Delta\lambda_{1/2}$	$\Delta\lambda_D$ ΔT_J
	GREEN	520 nm	530 nm	550 nm	35	0.04
LAMBERTIAN	CYAN	490 nm	505 nm	520 nm	30	0.04
	BLUE	460 nm	470 nm	490 nm	25	0.04
	ROYAL BLUE [2]	440 nm	455 nm	460 nm	20	0.04
	GREEN	520 nm	530 nm	550 nm	35	0.04
SIDE EMITTING	CYAN	490 nm	505 nm	520 nm	30	0.04
	BLUE	460 nm	470 nm	490 nm	25	0.04
	ROYAL BLUE ^[2]	440 nm	455 nm	460 nm	20	0.04

Optical Characteristics at 700mA, Junction Temperature, $T_J = 25$ °C, Continued

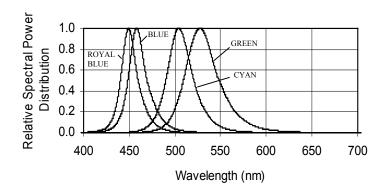
Radiation pattern	Color	Total included angle $^{(4)}$ (degree) $\theta_{0.90V}$	viewing angle ⁽⁵⁾ (degree) 2θ 1/2
Lambertian	GREEN	150	50
	CYAN	150	50
	BLUE	150	50
	ROYAL BLUE	150	50

Optical Characteristics at 700mA, Junction Temperature, $T_J = 25$ °C, Continued

Radiation Pattern	Color	Typical total flux percent within first $45^{\text{o(6)}}$ $\text{Cum}\Phi_{45^{\circ}}$	Typical angle of peak intensity 173 θ_{PEAK}
	GREEN	<30%	75° - 85°
SIDE EMITTING	CYAN	<30%	75° - 85°
	BLUE	<30%	75° - 85°
	ROYAL BLUE	<30%	75° - 85°

Notes: (for three optical tables)

- Dominant wavelength is derived from the CIE 1931 Chromaticity diagram and represents the perceived color. Lumileds maintains a tolerance of ± 0.5nm for dominant wavelength measurements.
- Royal Blue product is binned by radiometric power and peak wavelength rather than photometric lumens and dominant wavelength. Lumileds maintains a tolerance of ± 2nm for peak wavelength measurements.
- 3. Spectral width at ½ of the peak intensity.
- 4. Total angle at which 90% of total luminous flux is captured.
- 6½ is the off axis angle from lamp centerline where the luminous intensity is ½ of the peak value.
- 6. Cumulative flux percent within \pm 45° from optical axis.
- Off axis angle from lamp centerline where the luminous intensity reaches the peak value. On axis peak may be higher than off axis peak.
- 8. All products built with Indium Gallium Nitride (InGaN).
- Blue and Royal Blue power light sources represented here are IEC825 Class 2 for eye safety.


Electrical Characteristics at 700mA, Junction Temperature, T_J = 25°C

	Forv	ward Voltage	V _F (V) ^{t+1}	DYNAMIC RESISTANCE ^[2]	Temperature coefficient of forward voltage ^[3] (mV/°C)	THERMAL RESISTANCE, JUNCTION TO BOARD
Color	Min.	TYP.	Max.	(Ω) R _D	$\Delta V_F / \Delta T_J$	(∘C/W) Rθ _{J-B}
GREEN	5.43	6.84	8.31	1.0	-4.0	1.1
CYAN	5.43	6.84	8.31	1.0	-4.0	1.1
BLUE	5.43	6.84	8.31	1.0	-4.0	1.1
ROYAL BLUE	5.43	6.84	8.31	1.0	-4.0	1.1

Absolute Maximum Ratings

Parameter	GREEN/CYAN/ Blue/Royal Blue
DC FORWARD CURRENT (MA) [1]	700
PEAK PULSED FORWARD CURRENT (MA)	1000
AVERAGE FORWARD CURRENT (MA)	700
REVERSE VOLTAGE (V) [2]	> 5
LED JUNCTION TEMPERATURE (°C)	135
ALUMINUM-CORE PCB TEMPERATURE (°C)[3]	70
STORAGE & OPERATING TEMPERATURE (°C)	-40 to + I 20

Wavelength Characteristics, T_J = 25°C

Notes:

- 1. Lumileds maintains a tolerance of \pm 0.06V on forward voltage measurements.
- Dynamic resistance is the inverse of the slope in linear forward voltage model for LEDs. See Figure 3.
- 3. Measured between 25°C \leq TJ \leq 110°C at $I_F = 700$ mA.

Notes:

- Proper current derating must be observed to maintain junction temperature below the maximum. For more information, consult Luxeon Design Guide, available upon request.
- Allowable board temperature to avoid exceeding maximum junction temperature at maximum V_f limit at 700 mA based on thermal resistance of Star assembly.

Figure 1. Relative Intensity vs. Wavelength.

Light Output Characteristics

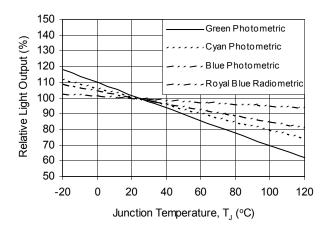


Figure 2.
Relative Light Output vs. Junction Temperature.

Forward Current Characteristics, $T_J = 25^{\circ}C$

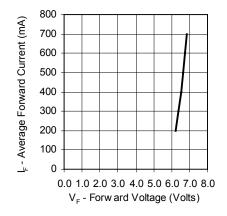


Figure 3. Forward Current vs. Forward Voltage.

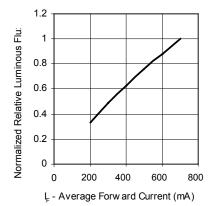
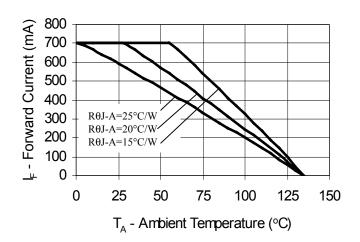
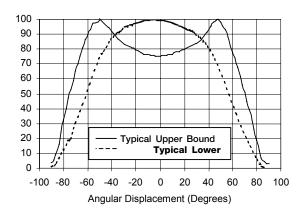



Figure 4. Relative Luminous Flux vs. Forward Current at $T_J = 25^{\circ}C$ maintained.

Current Derating Curve

additional information.


Additional heatsinking is required, even for extremely brief periods. Please consult

AB05, Luxeon Thermal Design Guide, for

Figure 5. Maximum Forward Current vs. Ambient Temperature. Derating based on T_{JMAX} = 135 °C

Representative Typical Spatial Radiation Pattern

Lambertian Radiation Pattern

Figure 6. Representative Typical Spatial Radiation Pattern for Luxeon V Star.

Side Emitting Radiation Pattern

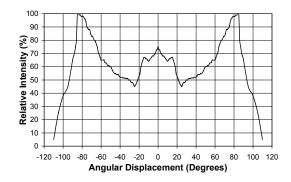


Figure 7.
Representative Typical Spatial Radiation
Pattern for Luxeon V Star.

www.TheLEDLight.com